Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microorganisms ; 11(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38004627

RESUMO

Knowledge of native Arbuscular Mycorrhizal Fungi (AMF) and their relationship with the edaphic characteristics where they live is important to establish the influence of allochthonous AMF, which were inoculated, on the development and stability of soil aggregates. The objectives of this research were to know the composition of native AMF species from two contrasting soils, and to establish the development and stability of aggregates in those soils with corn plants after inoculating them with allochthonous AMF. The experiment had three factors: Soil (two levels [S1 and S2]), HMA (three levels: without application [A0], with the application of Claroideoglomus claroideum [A1] and with the application of a consortium [A2]) and Fertilization (two levels (without fertilization [f0] and with fertilization [f1])). Twelve treatments were generated, with five replicates (60 experimental units [EU]). The EU consisted of a pot with a corn plant and the distribution was completely random. The results demonstrated that the Typic Ustifluvent presented nine species of native AMF, while the Typic Dystrustert had three; the native AMF in each soil influenced the activity of allochthonous AMF, such as their colonization and sporulation. Likewise, differences were found in the stability of macro-sized aggregates (0.5 to 2.0 mm).

2.
Sci Total Environ ; 869: 161845, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36709904

RESUMO

Acid sulfate soils are sulfide-rich soils that pose a notable environmental risk as their strong acidity and low pH mobilizes metals from soil minerals leading to both acidification and metal contamination of the surrounding environment. In this study a rapid and cost-efficient approach was developed to resolve the main distribution patterns and geochemical features of acid sulfate soils throughout coastal plains stretching for some 2000 km in eastern, southern, and western Sweden. Of the investigated 126 field sites, 47 % had acid sulfate soils including 33 % active, 12 % potential, and 2 % pseudo acid sulfate soils. There were large regional variations in the extent of acid sulfate soils, with overall much higher proportions of these soils along the eastern coastal plains facing the Baltic Sea than the western coastal plains facing the Kattegatt/Skagerrak (Atlantic Ocean). The sulfur concentrations of the soil's parent material, consisting of reduced near-pH neutral sediments, were correlated inversely both with the minimum pH of the soils in situ (rS = -0.65) and the pH after incubation (oxidation) of the reduced sediments (rS = -0.77). This indicated the importance of sulfide levels in terms of both present and potential future acidification. Hence, the higher proportion of acid sulfate soils in the east was largely the result of higher sulfur concentrations in this part of the country. The study showed that the approach was successful in identifying large-scale spatial patterns and geochemical characteristics of importance for environmental assessments related to these environmentally unfriendly soils.

3.
Environ Res ; 216(Pt 2): 114519, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252833

RESUMO

Soil attributes and their environmental drivers exhibit different patterns in different geographical directions, along with distinct regional characteristics, which may have important effects on substance migration and transformation such as organic matter and soil elements or the environmental impacts of pollutants. Therefore, regional soil characteristics should be considered in the process of regionalization for environmental management. However, no comprehensive evaluation or systematic classification of the natural soil environment has been established for China. Here, we established an index system for natural soil environmental regionalization (NSER) by combining literature data obtained based on bibliometrics with the analytic hierarchy process (AHP). Based on the index system, we collected spatial distribution data for 14 indexes at the national scale. In addition, three clustering algorithms-self-organizing feature mapping (SOFM), fuzzy c-means (FCM) and k-means (KM)-were used to classify and define the natural soil environment. We imported four cluster validity indexes (CVI) to evaluate different models: Davies-Bouldin index (DB), Silhouette index (Sil) and Calinski-Harabasz index (CH) for FCM and KM, clustering quality index (CQI) for SOFM. Analysis and comparison of the results showed that when the number of clusters was 13, the FCM clustering algorithm achieved the optimal clustering results (DB = 1.16, Sil = 0.78, CH = 6.77 × 106), allowing the natural soil environment of China to be divided into 12 regions with distinct characteristics. Our study provides a set of comprehensive scientific research methods for regionalization research based on spatial data, it has important reference value for improving soil environmental management based on local conditions in China.


Assuntos
Algoritmos , Solo , Análise por Conglomerados , Geografia , China , Lógica Fuzzy
4.
J Clean Prod ; 320: 128772, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34518745

RESUMO

The COVID-19 pandemic has not only caused a global health crisis, but it has also had significant environmental and human consequences. During the COVID-19 pandemic, this study focused on emerging challenges in managing healthy personal protective materials (HPPM) in Kingdom of Saudi Arabia, using silty sand (SM) soil as an example since it covers large areas in KSA and in the whole world. The main objective of this paper is to find a novel way to minimize pandemic-related waste by using HPPM as waste materials in road construction. For the first time, a series of experiments was conducted on a mixture of different percentages of shredded HPPM (0, 0.5, 1 and 2%) added to the silty sand (SM) soil for road applications, including soil classification according to the USCS, modified compaction, UCS, UPV, and CBR. In addition, a numerical simulation was performed using geotechnical-based software Plaxis 3D to study the performance of the soil-HPPM mix as a subbase layer in the paving structure under heavy traffic loading. The modified compaction test results show that there is an increase in the optimum moisture content with increasing the HPPM contents from 0.5% to 1% and 2%. However, a reduction in the maximum dry density is observed. The values of dry density and water content at 0%, 0.5%, 1% and 2% pf HPPM are 2.045, 1.98, 1.86 and 1.8 g/cm3 and 7.65% 8%, 8.5% and 9.5%, respectively. The soaked CBR values at 0, 0.5, 1 and 2% HPPM are 23, 30, 8, 2% with the maximum value attained with the addition of 0.5% HPPM. The results of UCS were with the same percentages of HPPM 430, 450, 430 and 415 kPa, respectively, with the maximum value attained with 0.5% HPPM addition as well. In contrast, the values of UVP at 0%, 0.5%, 1% and 2% are 978.5, 680.3, 489.4 and 323.6 m/s, respectively, confirming the trends obtained by modified compaction test results. The simulation results confirm this conclusion that the soil-HPPM mix show a superior performance when used as a subbase layer and reduced vertical displacement by a percentage of 11% compared to the normal subbase material. By eliminating HPPM especially facemasks from the landfill lifecycle, incorporating them into high quality construction material production has the potential to deliver significant environmental benefits.

5.
Heliyon ; 7(8): e07713, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34401590

RESUMO

Over the years, Casagrande plasticity chart is mainly used to classify fine grain soils. However, the use of the plasticity chart has been questioned recently and this has led to the development of a new plasticity chart. Polidori in 2007 and 2009, respectively, developed the new plasticity and activity charts using the Atterberg's limits of pure clays (montmorillonite and kaolinite clay minerals) and their mixture with fine silica sand in different proportions. The applicability of Polidori's charts was evaluated using some residual lateritic soils from Nigeria. On the Casagrande's plasticity chart, the lateritic soils mostly plot above the A-line in the zone designated as clay and classified as either CL or CH. However, on the Polidori's plasticity chart, the lateritic soils classified as CL or CH, whereas on Casagrande's plasticity chart they are classified as ML or MH and vice versa. The classifications obtained from Polidori's plasticity chart are predominantly in agreement with the main soil fractions or component of the soils. This is different from the classification obtained from Casagrande's plasticity chart where lateritic soils with lower clay fractions than their silt/sand fractions are classified as clayey soils. Polidori's activity chart shows that lateritic soils that lie in the same plastic zone may show different behavior due to the different properties of the clay minerals in the soils. In cases where the lateritic soils lie in the zone that is not corresponding to their clay contents on the Polidori's plasticity chart, we presume that other factors apart from those stated by Polidori might also be responsible. Although the use of Polidori's plasticity chart gives a fair classification of the lateritic soils, nevertheless the peculiarity of residual soils such as the in situ structure that influenced the properties of the soils and properties developed due to weathering effects must be taken into consideration as well.

6.
Sensors (Basel) ; 21(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917596

RESUMO

The major and minor components in granular soil materials determine their properties and behavior. This study explores the transitional behavior within threshold fines fraction of soil mixtures based on the data from the literature and experiments. From the literature survey, the void ratio, shear wave velocity, compression index, and friction angle capture the transitional turning point between the low and data-adjusted high threshold fines fractions. In particular, there is a dramatic change in hydraulic conductivity below the low threshold fines fraction that highlights the critical role of small amounts of fines in the fluid flow (e.g., clogging). From an experimental study, the engineering properties of natural soil samples identified using deformation and elastic wave sensors show transitional trends within the Revised Soil Classification System framework. The evolution of compressibility and shear wave velocity indicate that either coarse, fine, or both particles are likely to contribute to large and small strain stiffnesses when the effective stress is below 400 kPa. Thereafter, both engineering properties indicate that the soil sample retains a memory of in-situ overburden pressure when the effective stress is around 400 kPa. There is a critical role of fines that are slightly higher than low threshold fines fraction on engineering properties that promote the application of Revised Soil Classification System RSCS to natural soils.

7.
Data Brief ; 34: 106618, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33354601

RESUMO

The dataset contains 1339 cone penetration tests (CPT, CPTu, SCPT, SCPTu) executed within Austria and Germany by the company Premstaller Geotechnik ZT GmbH. As a first processing step, core drillings, located within a maximum distance of approximately 50 m to the insitu tests, were assigned to these cone penetration tests, which allow an interpretation of the insitu measurements based on its grain size distribution. In a second step, the software Geologismiki was used to calculate various normalized measures, which can e.g. be used as input parameters for soil behaviour type charts. The present data can be utilized by researches for example to develop new approaches related to soil classification based on cone penetration test. Furthermore, it provides a framework for combining insitu measurements (qc, fs, Rf, u2, Vs), normalized measures (i.e. Qt, Bq, U2) and soil classifications.

8.
Environ Monit Assess ; 192(12): 759, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184748

RESUMO

In recent years, indirect methods have been used to estimate soil salinity in agricultural lands. In this research, the electrical conductivity of 93 soil samples from 0 to 30 cm and 0 to 100 cm was measured using the hypercube technique at Sharifabad-Saveh Plain, Iran. Land area parameters such as TWI, TCI, STP, DEM, and LS were used as topographic variables and spatial indices of salinity and vegetation were derived from Landsat 8 images. Soil salinity off crops and gardens was determined at 0-30 cm and 0-100 cm. The data were divided into two series: the training set (70%) and the test set (30%). In order to model and predict salinity, models such as an artificial neural network (ANN), integration of neural network and genetic algorithm (ANN-GA), PLSR, and decision tree (DT) were used. The results of the models' evaluation based on MSE and R2 indices showed that the ANN-GA model has the highest accuracy in predicting soil properties. This model improved the accuracy of soil salinity prediction by 28%, 42%, and 23% in 0-30 cm and by 20%, 28%, and 25% at 100 cm than ANN, PLSR, and DT. The result showed the 2 dS/m EC at alfalfa and cucurbits farmlands while pistachio orchards have low salinity and bare lands have moderate and high salinity.


Assuntos
Salinidade , Solo , Monitoramento Ambiental , Irã (Geográfico) , Aprendizado de Máquina
9.
Data Brief ; 31: 105832, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32613036

RESUMO

As non-renewable natural resources, restoring Syrian soil quality is a vital issue for sustainable future planning after conflict ends. The data provided in this research exhibit features and physiochemical properties for soils from the southern part of Syria until the Jordanian border, which can provide decision-makers with sufficient information for rehabilitation stage after conflict in a regional scale. The data were collected from 107 representative soil profiles covering diverse agroecosystems throughout the area (i.e. Dara and Alswieda governorates). The most important data findings of this research included the first detection of Palygorskite {(Mg,Al)2Si4O10(OH)•4(H2O)} in Syrian soils, which is considered a strong evidence for the direct effects of the climate change on agroecosystem. Vertisols, Inceptisols, Entisols, Mollisols, and Aridisols were the most widespread soil types in the area. Overall, the database involves the field morphological characteristics, physicochemical, and mineralogical analyses.

10.
Sci Total Environ ; 734: 139121, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32464396

RESUMO

The two most widely extended mountain grasslands in Europe (Nardus-mat grasslands and chalk grasslands) are distributed forming complex patterns. In the Ordesa and Monte Perdido National Park (Central Pyrenees, NE-Spain), they grow as secondary pastures within the treeline ecotone at the subalpine belt. This work aims to show the influence of soil properties on the spatial distribution of these pastures, under a dynamic geomorphology. Soils are sampled under both grasslands, which grow on different cumulative levels: Nardus-mat grasslands in the upper level (L1) and chalk grasslands in the lower level (L2). Soils in L1 have a significantly higher acidity, lower soluble ions and exchangeable calcium content than those in L2, reflecting a more intense leaching process, consistent with a longer period of slope stability. Qualitative differences are detected in the soil organic matter of the soil, using carbon and nitrogen isotopes, lighter in L2 soils than in L1 soils, due to a higher proportion of legumes growing in L2 (chalk grasslands). Soils in L1 and L2 shared many physical properties, such as a fine and homogeneous texture in the whole profile (silty clay or silty clay loam), and high aggregate stability and porosity in the topsoil. In contrast, the soils in L2 are shallower than in L1, which reduces their water-holding capacity. The soil is classified as Orthoeutric Cambisol (Clayic, Humic) in L1 but its rejuvenation, by gully erosion, transforms it into an Hypereutric Leptosol (Loamic, Ochric) in L2 (Typic Haplocryept and Lithic Haplocryept, respectively by Soil Taxonomy system). Definitely, the distribution of both grasslands for the studied area is linked to two cumulative levels of different ages, which in turn is strongy related to different soil properties.

11.
Data Brief ; 29: 105254, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32099881

RESUMO

Soil survey is indispensable for land-use planning in any agro-ecosystem, particularly in coastal ecosystems because they often face several environmental problems such as flooding and water pollution, leading to soil degradation. The data given in this article revealing the common soil types and substantial taxonomy levels in the coastal region of Lattakia, Syria which is a key question for the land-use planning in the region. Data from 30 representative soil profiles and 60 auger points covering different agroecosystems within the Mediterranean coastal region of the Lattakia governorate, Syria were studied. The database including, the field morphological characteristics, physicochemical, mineralogical and micromorphological laboratory analyses. Entisols, Inceptisols, Mollisols, and Vertisols are the main soil types demonstrated in the area, which requiring convenient management for these divergent soils. The full profile data is available online in this data article for further reuse and for appropriate decisions to manage these soils.

12.
Ambio ; 49(2): 475-486, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31073983

RESUMO

Comparisons between field data and available maps show that 64% of wet areas in the boreal landscape are missing on current maps. Primarily forested wetlands and wet soils near streams and lakes are missing, making them difficult to manage. One solution is to model missing wet areas from high-resolution digital elevation models, using indices such as topographical wetness index and depth to water. However, when working across large areas with gradients in topography, soils and climate, it is not possible to find one method or one threshold that works everywhere. By using soil moisture data from the National Forest Inventory of Sweden as a training dataset, we show that it is possible to combine information from several indices and thresholds, using machine learners, thereby improving the mapping of wet soils (kappa = 0.65). The new maps can be used to better plan roads and generate riparian buffer zones near surface waters.


Assuntos
Florestas , Taiga , Aprendizado de Máquina , Solo , Suécia
13.
Huan Jing Ke Xue ; 41(1): 403-411, 2020 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854943

RESUMO

This study aims to understand the existence of stable soil organic carbon (C), nitrogen (N), and phosphorus (P) ratios in paddy soil. Based on a field soil survey database, the ecological stoichiometry of the C:N:P ratio of 110 subtropical paddy soil profiles and 587 genetic horizons were analyzed at a regional scale. Relevant analysis and redundancy analysis (RDA) are used to study the relationships between C:N:P ratios and soil-environmental factors (topography, parent materials, soil genetic horizons, soil groups, soil physical, and chemical properties). The results showed that the weighted averages of C:N, C:P, and N:P in paddy soils of subtropical regions were 12.6, 49, and 3.9, respectively, and C:N:P was 38:3.2:1. The C:N of paddy soil did not vary significantly with parent materials, soil groups, or genetic horizons. However, the C:P and N:P variations were significantly different, and the mean values of the two were much lower than global ratios (186 and 13.1) and average levels of C:P and N:P in Chinese soils (136 and 9.3). Although the C:N:P ratio in the paddy soil profile was relatively unstable, the topsoil C:N (14.2) was relatively stable due to the strong interaction between the topsoil and the environment. This reflects the close coupling of C and N in the topsoil of paddy fields under long-term anthrostagnic maturation. However, in the paddy soil profile, C:P and N:P were not stable, and there was no significant correlation between soil organic carbon (SOC) and total P content, total N, or total P content, which suggests that environmental changes may lead to soil C:N:P decoupling. It was found that topography, soil texture, iron oxide, and bulk density are all key soil-environmental factors that regulate the soil profile of rice paddy C:N:P.


Assuntos
Carbono/análise , Nitrogênio/análise , Oryza , Fósforo/análise , Solo/química , Microbiologia do Solo
14.
Sci Total Environ ; 693: 133463, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31376756

RESUMO

The demand for information on the soil resource to support the establishment of public policies for land use and management has grown exponentially in the last years. However, there are still difficulties to the proper use of already existing information for soil mapping. Here we aimed to establish a protocol for soil mapping using legacy data, magnetic signature and soil attributes evaluation. A total of 493 soil samples were collected at 0-0.20 m in the geological domain of Western Plateau of São Paulo State. This work has three parts: First, we performed a classification analysis using soil mapping units (SMU) extracted from conventional soil map and Support Vector Machines algorithm (SVM). As covariates, we used categorical information, such as geology, dissection and landform maps. Second, we used soil attributes to perform a cluster analysis using k-means as partitioning method. To choose the optimal number of clusters, the same number of SMU showed in the conventional soil map (e.g. 34 clusters) were used. The last step was to compare soil and clusters maps predicted by SVM with the conventional soil map. Results showed good performance of SVM for both classifications (clusters and SMU), with overall accuracy of 0.60 and 0.90 respectively. In addition, the distribution of soil attributes within each cluster was more homogeneous and well distributed than within SMU, showing that is very possible to use numerical classification for soil mapping. Future soil surveys could use cluster analysis as a preliminary evaluation for better understanding of tropical soil variations.

15.
Data Brief ; 25: 104070, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31431909

RESUMO

Geospatial soil information is critical for agricultural policy formulation and decision making, land-use suitability analysis, sustainable soil management, environmental assessment, and other research topics that are of vital importance to agriculture and economy. Proximal and Remote sensing technologies enables us to collect, process, and analyze spectral data and to retrieve, synthesize, visualize valuable geospatial information for multidisciplinary uses. We obtained the soil class map provided in this article by processing and analyzing proximal and remote sensed data from soil samples collected in toposequences based on pedomorphogeological relashionships. The soils were classified up to the second categorical level (suborder) of the Brazilian Soil Classification System (SiBCS), as well as in the World Reference Base (WRB) and United States Soil Taxonomy (ST) systems. The raster map has 30 m resolution and its accuracy is 73% (Kappa coefficient of 0.73). The soil legend represents a soil class followed by its topsoil color.

16.
Biosci. j. (Online) ; 35(4): 1083-1098, july/aug. 2019. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1048831

RESUMO

The soil and vegetation characteristics of the southern Amazonas region include highly weathered soils, high aluminum content and some hydromorphic conditions, its vegetation is composed from grasslands to small isolated trees and forest galleries along the rivers streams. In this way, this work aims to characterize and classify the soil in areas of clean field, dirty field, and forest in Humaitá region AM. Soil trenches were opened in the clean field, dirty field, and forest environments, soil profiles were morphologically characterized, and samples were collected from their horizons. Physical analysis of texture, dispersed clay in water, flocculation, bulk density, particle density and porosity were performed. The chemical analyzes included pH and KCl in water; Ca, Mg, K, Al, and; available P; H+Al and organic C; SiO2, Al2O3 and Fe2O3 sulfuric attack. The soils were classified according to criteria established by the Brazilian System of Soil Classification and Soil Taxonomy. The forest, dirty field (high) and clean field (low) showed different soil types, Typic Dystrudept for the first two environments and Typic Fluvaquents for last. Multivariate techniques expressed the similarity relations presenting between the different environments studied, characterizing, which are of great importance in the relation landscape-soil studies.


As características do solo e da vegetação da região sul do Amazonas incluem solos altamente intemperizados, alto teor de alumínio e algumas condições hidromórficas, sendo sua vegetaçãocomposta por pastos, pequenas árvores isoladas e galerias florestais ao longo dos cursos d'água. Desta forma, este trabalho tem como objetivo caracterizar e classificar o solo em áreas de campo limpo, campo sujo e floresta na região de Humaitá AM. As valas foram abertas no campo limpo, no campo sujo e nos ambientesflorestais, os perfis dos solos foram caracterizados morfologicamente e as amostras foram coletadas de seus horizontes. Análises físicas de textura, argila dispersa em água, floculação, densidade do solo, densidade de partículas e porosidade foram realizadas. As análises químicas incluíram pH e KCl em água; Ca, Mg, K, Al e; P disponível; H + Al e C orgânico; Ataque sulfúrico de SiO2, Al2O3 e Fe2O3. Os solos foram classificados de acordo com critérios estabelecidos pelo Sistema Brasileiro de Classificação de Solos e Taxonomia de Solos. A mata, o campo sujo (alto) e o campo limpo (baixo) apresentaram diferentes tipos de solo, distritos típicos para os dois primeiros ambientes e fluídicos típicos para o último. Técnicas multivariadas expressaram as relações de similaridade que se apresentam entre os diferentes ambientes estudados, caracterizando, que são de grande importância na relação paisagem-solo.


Assuntos
Solo , Ecossistema Amazônico
17.
Front Microbiol ; 9: 809, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755437

RESUMO

The rare biosphere is predicted to aid in maintaining functional redundancy as well as contributing to community turnover across many environments. Recent developments have partially confirmed these hypotheses, while also giving new insights into dormancy and activity among rare communities. However, less attention has been paid to the rare biosphere in soils. This study provides insight into the rare biosphere's contribution to soil microbial diversity through the study of 781 soil samples representing 24 edaphically diverse sites. Results show that Bray-Curtis dissimilarity for time-sensitive conditionally rare taxa (CRT) does not correlate with whole community dissimilarity, while dissimilarity for space-sensitive CRT only weakly correlate with whole community dissimilarity. This adds to current understanding of spatiotemporal filtering of rare taxa, showing that CRT do not account for community variance across tested soils, but are under the same selective pressure as the whole community.

18.
Biociencias ; 12(1): 31-35, 2017. tab
Artigo em Espanhol | LILACS, COLNAL | ID: biblio-969690

RESUMO

En el presente estudio se realizó una selección de cuatro sitios con alta presencia de poblaciones de chile silvestre en un área de 85 km2, correspondiente al municipio de Mocorito, Sinaloa, México. Mediante la observación en campo, se decidió realizar un perfil de suelo en cada uno de los sitios, el cual consistió en la descripción de campo, análisis físico-químico e hidrofísico y la clasificación de los diferentes tipos de suelo. De esta forma se logró identificar un tipo de suelo por cada población de chile silvestre, estos corresponden al tipo de suelo Vertisol, Fluvisol, Leptosol y Feozem.


A selection of four sites was performed with high presence of populations of wild chilli in an area of 85 km2, corresponding to the municipality of Mocorito, Sinaloa, Mexico. Through field observations, it was decided to conduct a soil profile on each of the sites, which consisted in the description field and hidrofísico physicochemical analysis and classification of differents types of soil. Thus was identified a type of soil per population of wild chilli, these correspond to soil type Vertisol, Fluvisol, Leptosol and Feozem.


Assuntos
Solos Argilosos , Natureza
19.
Ciênc. rural ; 43(7): 1210-1217, jul. 2013. ilus, tab
Artigo em Português | LILACS | ID: lil-679252

RESUMO

Na região sul do Brasil, foi verificada a ocorrência de forte gradiente textural em solos localizados em áreas de morros graníticos. O presente estudo teve como objetivo avaliar os processos pedogenéticos envolvidos na formação de solos em topossequência de granito em Porto Alegre (RS). Foram descritos e amostrados morfológica, química, física e mineralogicamente quatro perfis de solos localizados em diferentes segmentos da paisagem. Os perfis de solos do topo, encosta superior e sopé da topossequência apresentaram gradiente textural expressivo, e a relação argila fina:argila total aumentou nos horizontes subsuperficias (Bt), indicando transporte da fração mais fina. O índice de uniformidade inferior a 0,6 sugeriu que os solos não apresentaram indícios de descontinuidade litológica. O índice Ki, a relação Fe2O3d/Fe2O3s e a presença de feldspato e minerais 2:1 e 2:1:1, constatadas pela difração de raios-x indicaram grau de intemperismo intermediário. A difração por raios x também mostrou aumento do argilomineral caulinita em profundidade. Na encosta inferior, o perfil de solo não apresentou horizonte B pedogenético. Os resultados são indicativos da ocorrência da lessivagem como o principal processo pedogenético atuante, apesar das características indicativas de estádio de intemperismo pouco avançado.


In Brazil's South region, it had been verified high textural change in soils of granitic hilly areas. This study had the objective to evaluate pedogenetic processes involved in a granite toposequence in Porto Alegre city, Brazil. Soil profiles were described and analyzed in morphological, physical, chemical and mineralogical issues. Soil profiles at summit, upper slope and foot slope showed expressive textural change and the relationship fine clay:total clay increased in subsurface horizons (Bt), indicating finer fraction translocation. Uniformity index lower than 0,6 showed absence of lithologic discontinuity. Ki index, Fe2O3(d)/Fe2O3(s) relationship and presence of feldspar, 2:1 and 2:1:1 minerals, detected in X-Ray diffraction analysis, indicated intermediate weathering degree. X-Ray diffraction also indicates higher caulinite content in subsurface. At down slope position, soil profile didn't show the presence of B pedogenetic horizon. Results indicated lessivage as the main pedogenetic process, associated with the presence of some characteristics, which shows low advanced pedogenetic development in these profiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...